Nonsingular Meshless Method in an Acoustic Indoor Problem

نویسندگان

چکیده

An efficiency of the nonsingular meshless method is analyzed in an acoustic indoor problem. The solution assumed form series radial bases functions. Hardy’s multiquadratic functions, as bases, are taken into account. room field with uniform, impedance walls considered. representative, rectangular cross section chosen. Practical combinations of acoustic boundary conditions, expressed through absorption coefficient values, classical formulation problem used. It established any functions depend on number influence points, frequency and coefficient. All approximate results calculated relation to exact ones. This way, it proved that meshless method based simple efficient description complicated problems for low medium ranges frequency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

Nonsingular Block Graphs: An Open Problem

A block graph is a graph in which every block is a complete graph (clique). Let G be a block graph and let A(G) be its (0,1)-adjacency matrix. Graph G is called nonsingular (singular) if A(G) is nonsingular (singular). Characterizing nonsingular block graphs, other than trees, is an interesting open problem. In this article, we give some classes of nonsingular and singular block graphs and rela...

متن کامل

a boundary meshless method for neumann problem

boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...

متن کامل

A Meshless Computational Method for Solving Inverse Heat Conduction Problem

In this paper, a new meshless numerical scheme for solving inverse heat conduction problem is proposed. The numerical scheme is developed by using the fundamental solution of heat equation as basis function and treating the entire space-time domain in a global sense. The standard Tikhonov regularization technique and L-curve method are adopted for solving the resultant ill-conditioned linear sy...

متن کامل

Application of Collocation Meshless Method to Eigenvalue Problem∗)

The numerical method for solving the nonlinear eigenvalue problem has been developed by using the collocation Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained stably by using the developed method. Therefore, it can be concluded that the dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archives of Acoustics

سال: 2023

ISSN: ['2300-262X', '0137-5075']

DOI: https://doi.org/10.24425/118082